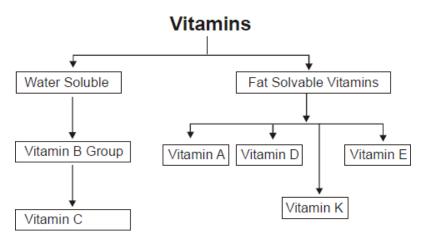
Lecture 7

Discipline: Bioorganic Chemistry

Lecturer: Associate Professor, Dr. Gulnaz Seitimova

Title: Water-soluble and fat-soluble vitamins. The mechanism of action of vitamins.


Objective: To provide an understanding of the chemical nature, classification, and physiological roles of vitamins. To explain the structural differences and absorption pathways of water-soluble vs. fat-soluble vitamins. To describe the biochemical mechanisms by which vitamins exert their biological functions, including their participation as coenzymes, antioxidants, and regulators of gene expression.

Main Questions: Classification of vitamins: water-soluble and fat-soluble. Chemical structure and physicochemical characteristics of each vitamin group. Absorption, transport, storage, and excretion of vitamins. Mechanisms of vitamin action at the molecular level. Role of water-soluble vitamins in metabolism (as coenzymes). Role of fat-soluble vitamins in vision, bone health, antioxidation, blood clotting, and gene regulation. Vitamin deficiencies and hypervitaminosis.

Key Notes and Theses

General Characteristics of Vitamins

- Vitamins are low-molecular-weight organic compounds essential in small quantities for metabolic regulation.
- They are not synthesized in sufficient amounts by the human body and must be obtained from the diet.
- Vitamins function mainly as coenzymes, antioxidants, and hormone-like regulators of gene expression.

Water-Soluble Vitamins

Includes: Vitamin C and B-complex vitamins (B1, B2, B3, B5, B6, B7, B9, B12). Characteristics:

- Highly polar, readily soluble in water.
- Poor storage in the body \rightarrow require continuous dietary intake.
- Excess amounts are excreted in urine.
- Most function as coenzymes in metabolic pathways.

Key Examples:

- Vitamin B₁ (Thiamine): coenzyme TPP in carbohydrate metabolism.
- Vitamin B₂ (Riboflavin): part of FMN and FAD in redox reactions.
- Vitamin B₃ (Niacin): precursor to NAD⁺/NADP⁺.
- Vitamin B₆ (Pyridoxine): coenzyme PLP in amino acid metabolism.
- Vitamin B₉ (Folate): essential for nucleotide biosynthesis.
- Vitamin B₁₂: involved in DNA synthesis and methylation cycles.
- Vitamin C: antioxidant and cofactor for collagen synthesis.

Fat-Soluble Vitamins

Includes: Vitamins A, D, E, K.

Characteristics:

- Non-polar, require dietary fats for absorption in the intestine.
- Can accumulate in liver and adipose tissues \rightarrow risk of hypervitaminosis.
- Function in vision, antioxidation, blood coagulation, and gene regulation.

Key Examples:

- Vitamin A (Retinoids): essential for vision cycle (retinal), epithelial integrity, immune function.
- Vitamin D (Calciferols): steroid-like regulator of calcium metabolism; acts via nuclear receptors.
 - Vitamin E (Tocopherols): lipid-phase antioxidant protecting membranes.
 - Vitamin K: cofactor for γ -carboxylation of clotting factors (II, VII, IX, X).

Comparison of fat- and water-soluble vitamins

S. No.	Characteristics	Fat soluble vitamins	Water soluble vitamins
1	Solubility	Fat soluble	Water soluble
2	Absorption	Bile salts are required	Simple intestinal absorption
3	Transportation	Transported by carrier protein	Travels freely in the body without requiring carrier protein (except Vitamin B_{12})
4	Storage	Stored in liver and fatty tissues	Not stored (except vitamin B ₁₂)
5	Excretion	Usually the surplus vitamins are stored	Surplus vitamins are detected in kidney and removed in urine
6	Accumulation	Usually hypervitaminosis occurs	Usually hypervitaminosis deosn't occur (except in high dosage and slow release of some B vitamins)
7	Deficiency compensation	Required in periodic doses (weeks or months)	Required in frequent doses (1 - 3 days)

Mechanism of Action of Vitamins

- 1. As Coenzymes (mainly water-soluble)
- Vitamins convert to active coenzyme forms (TPP, FAD, NAD⁺, PLP, CoA, THF).
- They participate in:
- Redox reactions
- Transamination
- Carboxylation
- Acyl group transfer
- Nucleotide synthesis
- 2. As Antioxidants

E.

- Vitamins C and E neutralize free radicals.
- Vitamin E protects lipid membranes, while Vitamin C regenerates oxidized Vitamin
- 3. As Hormone-Like Regulators (fat-soluble)
- Vitamins A and D bind to nuclear receptors and regulate gene expression.
- Vitamin D affects calcium homeostasis; retinoic acid regulates epithelial differentiation.
 - 4. As Cofactors in Post-Translational Modifications
 - Vitamin K participates in the γ -carboxylation of glutamate residues.
- Vitamin C is required for hydroxylation of proline and lysine during collagen synthesis.

Questions for Knowledge Assessment

- 1. What are the main structural differences between water-soluble and fat-soluble vitamins?
 - 2. Explain how vitamins function as coenzymes in biochemical reactions.
 - 3. Why do water-soluble vitamins require daily intake?
 - 4. Describe the mechanism of action of vitamins A and D at the molecular level.
 - 5. What is the physiological role of Vitamin K in blood coagulation?
 - 6. Discuss the antioxidant functions of Vitamins C and E.
 - 7. Provide examples of vitamin deficiencies and their metabolic consequences.

Recommended Literature

- 1. Nelson, D. L., Cox, M. M. (2017). *Lehninger Principles of Biochemistry* (7th ed.). New York: W.H. Freeman and Company.
- 2. Voet, D., Voet, J. G. (2011). *Biochemistry* (4th ed.). Hoboken, NJ: John Wiley & Sons.
- 3. Garrett, R. H., Grisham, C. M. (2016). *Biochemistry* (6th ed.). Boston, MA: Cengage Learning.
- 4. Stryer, L., Berg, J. M., Tymoczko, J. L., Gatto, G. J. (2015). *Biochemistry* (8th ed.). New York: W.H. Freeman and Company.
- 5. McMurry, J. (2010). *Organic Chemistry with Biological Applications* (2nd ed.). Belmont, CA: Brooks/Cole, Cengage Learning.
- 6. McMurry, J., Castellion, M. E. (2002). Fundamentals of General, Organic, and Biological Chemistry (4th ed.). Upper Saddle River, NJ: Prentice Hall.

- 7. Fromm, H. J., Hargrove, M. (2012). *Essentials of Biochemistry*. Berlin, Heidelberg: Springer-Verlag.
- 8. Hunter, G. K. (2000). Vital Forces: The Discovery of the Molecular Basis of Life. San Diego, CA: Academic Press.
- 9. Tyukavkina, N. A., Baukov, Y. I. (2014). *Bioorganic Chemistry* (in Russian). Moscow.
 - 10. Ovchinnikov, Y. A. (1987). Bioorganic Chemistry (in Russian). Moscow.
- 11. Rouessac, F., Rouessac, A. (2007). *Chemical Analysis: Modern Instrumentation Methods and Techniques*. Hoboken, NJ: John Wiley & Sons.
- 12. Jeffery, G. H., Bassett, J., Mendham, J., Denney, R. C. (1989). *Vogel's Textbook of Quantitative Chemical Analysis* (5th ed.). London: Longman; John Wiley & Sons.